| LOCATION | | | WATER | ·· | Form WWC- | | | | |---|--|--|--|--|----------------------------|---|--|---| | | | R WELL: | Fraction | | 1 | ction Number | Township Number | Range Number | | bee concte | | | NE 1/4 | NE ¼ NW | 1/4 | _28 | <u>т 14</u> в | R 1 E/W | | | | | | dress of well if located st of Kipp, | | | | | | WATER V | VELL OWN | | | | | | | | | R#, St. Add | dress, Box | #: 8064 1 | E. Čloud | | | | Board of Agricult | ure, Division of Water Resource | | ity, State, Z | IP Code | : Salina | a, Ks. 6 | 7401 | | | Application Numb | | | LOCATE V
AN "X" IN | VELL'S LO | CATION WITH 4 | DEPTH OF CO | OMPLETED WELL | | | | ft. 3 ft. | | | X
 X
 | W W Es | ELL'S STATIC
Pump
st. Yield 20-
ore Hole Diamet | WATER LEVEL |)ft. t
was
was
45 | pelow land sur
ft. a
13 ft. a
ft., a | face measured on mo/dater hour ther 2 hour and | ay/yr 5/2/86
s pumping gpm
s pumping 12 gpm
in. to | | | 1 1 | ! W | | | 5 Public water | | 8 Air conditioning | 11 Injection well | | | sw | - SE | 1 Domestic | | 6 Oil field wa | | 9 Dewatering | 12 Other (Specify below) | | | 1 | - i | 2 Irrigation | | | | 0 Observation well | | | | <u> </u> | | as a chemical/b
itted | acteriological sample su | ubmitted to D | - | es; lí
er Well Disinfected? Ye | yes, mo/day/yr sample was suis X | | TYPE OF | BLANK CA | SING USED: | | 5 Wrought iron | 8 Concr | ete tile | CASING JOINTS: | Glued $X\ldots$ Clamped \ldots | | 1 Steel | | 3 RMP (SR) | | 6 Asbestos-Cement | 9 Other | (specify below | <i>'</i>) | <i>W</i> elded | | 2 PVC | | 4 ABS | | 7 Fiberglass | , | , , , , | | Threaded | | lank casing | diameter . | | _{to} 26 | ft., Dia3.6 | in. to | 45 | ft., Dia | Threaded | | asing heigh | t above lan | d surface 1 ? | 2 i | in., weight 2.• 9 | 9.1 | lbs./i | t. Wall thickness or gau | ge No • .26.5 | | | | PERFORATION N | | | 7 PV | | 10 Asbestos- | | | 1 Steel | | 3 Stainless st | eel | 5 Fiberglass | | MP (SR) | | ecify) | | 2 Brass | . | 4 Galvanized | | 6 Concrete tile | 9 AE | | 12 None used | • • | | | | TION OPENINGS | | | d wrapped | _ | 8 Saw cut | 11 None (open hole) | | | nuous slot | 3 Mill s | | 6 Wire w | • • | | 9 Drilled holes | TT None (open note) | | | ered shutter | | punched | 7 Torch | • • | | | | | | |) INTERVALS: | From | 26 ft. to | 36 | 4 F | 10 Other (specify) | ft. toft | | | | | From | ft. to | | ft., Fror | n | ft. toft | | GHA | AVEL PACI | (INTERVALS: | | | ، ب. ب. ب. | | | ft. to | | | | | From | ft. to | | ft., Fror | | ft. to ft | | GROUT M | | 1 Neat cerr | | 2 Cement grout | 3 Bento | | | | | rout Interval | ls: From | | to サン | ft., From | tt . | to | | ft. toft | | /hat is the n | earest sou | 5ft.
ce of possible cor | | | | 10 Livest | ock pens | 14 ADAHOOHOO Water Well | | hat is the n
1 Septic | | | ntamination: | 7 Pit privy | | | • | | | 1 Septio | c tank | ce of possible cor
4 Lateral I | ntamination:
ines | 7 Pit privy | on | 11 Fuel s | storage | 15 Oil well/Gas well | | 1 Seption 2 Sewe | c tank
er lines | rce of possible cor
4 Lateral li
5 Cess po | ntamination:
ines
pol | 7 Pit privy
8 Sewage lago | on | 11 Fuel s
12 Fertili | storage
zer storage | | | 1 Seption 2 Sewer 3 Water | c tank
er lines
rtight sewer | ce of possible cor 4 Lateral li 5 Cess po lines 6 Seepage | ntamination:
ines
pol | 7 Pit privy | on | 11 Fuel s
12 Fertili
13 Insect | storage
zer storage
icide storage | 15 Oil well/Gas well
16 Other (specify below) | | 1 Seption 2 Sewer 3 Water rection from | c tank
er lines
rtight sewer | ce of possible cor
4 Lateral li
5 Cess po
lines 6 Seepage
Vest | ntamination:
ines
ool
e pit | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Seption 2 Sewer 3 Water irection from FROM | c tank
or lines
rtight sewer
n well? | tce of possible cor
4 Lateral li
5 Cess po
lines 6 Seepage
Vest | ntamination:
ines
pol | 7 Pit privy
8 Sewage lagor
9 Feedyard | on FROM | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well
16 Other (specify below) | | 1 Septic
2 Sewe
3 Water
irection from
FROM | c tank or lines rtight sewer n well? TO 5 | ce of possible cor 4 Lateral li 5 Cess po lines 6 Seepage West Top Soil | ntamination: ines_ ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irection from FROM 0 5 | c tank or lines rtight sewer n well? TO 5 12 | ce of possible cor
4 Lateral II
5 Cess po
lines 6 Seepage
West
Top Soil
Brown Cla | ntamination: ines_ ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from FROM 0 5 12 | c tank or lines rtight sewer n well? TO 5 12 27 | ce of possible cor
4 Lateral ii
5 Cess po
lines 6 Seepage
Vest
Top Soil
Brown Cla
Red Clay | ntamination: ines ines pol pit LITHOLOGIC L | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from FROM 0 5 12 27 | c tank or lines rtight sewer n well? TO 5 12 27 31 | rce of possible cor
4 Lateral ii
5 Cess po
lines 6 Seepage
Vest
Top Soil
Brown Cla
Red Clay
Medium Sa | ntamination: ines ines pol pit LITHOLOGIC L TY | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from FROM 0 5 12 27 31 | c tank or lines rtight sewer n well? TO 5 12 27 31 | te of possible core of possible core of possible core of possible core of the second s | ntamination: ines ines pol pit LITHOLOGIC L Ty The condition of cond | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 | c tank or lines rtight sewer n well? TO 5 12 27 31 | te of possible core of possible core of possible core of possible core of the second s | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha | ntamination: ines_ ines_ inel ines_ inel inel inel inel inel inel inel inel | 7 Pit privy
8 Sewage lagor
9 Feedyard | • | 11 Fuel s
12 Fertili
13 Insect
How mar | storage
zer storage
icide storage
ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) | | 1 Septic 2 Sewe 3 Water 3 Water 0 5 12 27 31 35 41 | c tank or lines right sewer n well? TO 5 12 27 31 35 41 45 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha Gray Shal | ntamination: ines_ ines_ iol a pit LITHOLOGIC L ay and and & Cre ale | 7 Pit privy 8 Sewage lagor 9 Feedyard OG | FROM | 11 Fuel s 12 Fertili. 13 Insect How man | storage zer storage icide storage ny feet? 1200 f | 15 Oil well/Gas well 16 Other (specify below) L. LOGIC LOG | | 1 Septic 2 Sewe 3 Water irrection from FROM 0 5 12 27 31 35 41 | c tank or lines rtight sewer n well? TO 5 12 27 31 35 41 45 | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha Gray Shal | ntamination: ines ines ines ines ines ines ines ines | 7 Pit privy 8 Sewage lagor 9 Feedyard OG eek Gravel | FROM | 11 Fuel s 12 Fertilii 13 Insect How mar TO | storage zer storage zer storage icide storage Ny feet? 1200 f- LITHO | 15 Oil well/Gas well 16 Other (specify below) t. LOGIC LOG | | 1 Septic 2 Sewe 3 Water irrection from 0 5 12 27 31 35 41 CONTRAC | c tank or lines rtight sewer n well? TO 5 12 27 31 35 41 45 CTOR'S OF (mo/day/ye | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha Gray Shal | ntamination: ines ines ines ines ines ines ines ines | 7 Pit privy 8 Sewage lagor 9 Feedyard OG eek Gravel | FROM | 11 Fuel s 12 Fertilii 13 Insect How mar TO cted, (2) reco | storage zer storage zer storage icide storage Ny feet? 1200 f LITHO Distructed, or (3) plugged d is true to the best of m | Is Oil well/Gas well Is Other (specify below) LOGIC LOG under my jurisdiction and was by knowledge and belief. Kansas | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 35 41 CONTRAC empleted on ater Well Co | c tank or lines rtight sewer n well? TO 5 12 27 31 35 41 45 CTOR'S OF (mo/day/ye ontractor's | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha Gray Shal | centification: ines ines pol pit LITHOLOGIC L ay and and & Cre ale Le | 7 Pit privy 8 Sewage lagor 9 Feedyard OG Peek Gravel ON: This water well wa | FROM | 11 Fuel s 12 Fertilii 13 Insect How mar TO cted, (2) recor and this records completed of | storage zer storage icide storage y feet? 1200 f- LITHO Districted, or (3) plugged d is true to the best of mon (mo/day/yr) | 15 Oil well/Gas well 16 Other (specify below) t. LOGIC LOG | | 1 Septic 2 Sewe 3 Water irection from 0 5 12 27 31 35 41 CONTRAC impleted on ater Well Coder the bus | c tank or lines rtight sewer n well? TO 5 12 27 31 35 41 45 CTOR'S OF (mo/day/ye ontractor's siness name | Top Soil Brown Cla Red Clay Medium Sa Medium Sa Green Sha Gray Shal | centification: ines ines ines ines ines ines ines ines | 7 Pit privy 8 Sewage lagor 9 Feedyard OG Peek Gravel ON: This water well wattion. The | FROM s (1) constru | 11 Fuel s 12 Fertilii 13 Insect How man TO cted, (2) recount this recount this recount this recount the second this recount the second this recount the second | storage zer storage icide storage y feet? 1200 f LITHO Distructed, or (3) plugged is true to the best of men (mo/day/yr) | Is Oil well/Gas well Is Other (specify below) LOGIC LOG under my jurisdiction and was by knowledge and belief. Kansas |