| 1 1 00 4 7 1 | NI OF 1111 | CD MC!! | F | | | | \4' \ ' | -1212
 | - N | | NI I | |--|--|--|--|--|--|--|---|------------------------|--|---|---| | , | | ER WELL:
ice Ø8Ø | Fraction | ., | | | Section Number | 1 . | ip Number | i . | ge Number | | ounty: | | ice 989 | NE | 14 SE | 1/4 NE | | 30 | T 19 | 9 s | R | 9 E (N | | | | from nearest town | | | well it locat | ed within city | 1? | | | | | | pprox | <u>. 1 mile</u> | north of (| Chase, K | .S | | | | | | | | | WATER | WELL OW | NER: | | Robert | Link | | | | | | | | R#, St. A | Address, Box | (# : | | Route : | 1 | | | Board | of Agriculture, D | Division of | Water Resour | | ity, State, | ZIP Code | : | | Chase, | KS 675 | 24 | | Applic | ation Number: | not r | equired | | | | CATION WITH 4 | DEPTH OF | | | | # ELEVA | | | | | | AN "X" I | IN SECTION | | | | | | | | | | | | _ | <u> </u> | | | | | | below land sur | | | | | | | _ i _ l | | | | | | | | | | | | - | - NW | NE | | | | | t.ck.".d. ft. a | | | | | | ľ | 1 | | | | | | ft. a | | | | | | w - | 1 | | | | |) M 5. | 7 | | | to | · · · · · · · · · · · · · · · · | | | ! | ! ⁻ ^v | VELL WATE | R TO BE US | SED AS: | 5 Public w | ater supply | 8 Air conditio | ning 11 | njection w | ell . | | L | _ sw | & | 1 Domes | tic 3 l | Feedlot | 6 Oil field | water supply | 9 Dewatering | 12 (| Other (Spe | ecify below) | | | - ;;;] | | 2 Irrigatio | on 4 l | Industrial | 7 Lawn an | d garden only | 10 Observatio | n well | | | | | _ i | l V | Vas a chemic | cal/bacteriolo | gical sample | submitted to | Department? Ye | esNo | x; If yes, | mo/day/yr | sample was s | | | S | _n | nitted | | | | Wa | ter Well Disinf | ected? Yes | x N | lo | | TYPE O | F BLANK C | ASING USED: | , | 5 Wrou | ght iron | 8 Con | crete tile | CASING | JOINTS: Glued | X C | Clamped | | 1 Ste | el | 3 RMP (SR) | | | stos-Cement | 9 Oth | er (specify below | | | | | | 2 PV | | 4 ABS | | 7 Fiber | | | | • | | | | | | | 5 ir | 42 | | ~ | | | | | | | | | | and surface | | | | | | | | | | | | | | | iri., weig | m | | | | | | • <i>6</i> | | | | R PERFORATION | | | | | PVC | | Asbestos-ceme | | | | 1 Ste | | 3 Stainless s | | 5 Fiber | _ | | RMP (SR) | | Other (specify) | | | | 2 Bra | | 4 Galvanized | | 6 Conc | | | ABS | | None used (ope | | | | CREEN C | OR PERFOR | RATION OPENING | | | 5 Gau | zed wrapped | | 8 Saw cut | | 11 None | (open hole) | | 1 Cor | ntinuous slot | t 3 Mill | slot | | 6 Wire | wrapped | | 9 Drilled ho | <u>les</u> | | | | 2 Lou | vered shutte | er 4 Key | punched | | 7 Torc | | | | ecify) | | | | CREEN-P | PERFORATE | D INTERVALS: | From | 42 | 4 40 | 57 | | ~ | 44 4. | | | | | | | | | IL. IQ . | | π., ⊢ror | !! <i>.</i> | |) <i>.</i> | | | | | | | | | | π., Fror
ft., Fror | | | | | | G | RAVEL PAG | OK INTERVALS: | From | | ft. to . | | ft., Fror | m | ft. to |) | | | | RAVEL PAG
Annulai | | From | | ft. to . | 57 | ft., Fror
ft., Fror | n | ft. to |)
) | | | | Annula | Fill | From
From
From | 30 | ft. to .
ft. to .
ft. to | 57 | ft., Fror
ft., Fror
ft., Fror | n | ft. to |)
) | | | GROUT | Annula: | Fill Neat ce | From
From
From | 30
20
2 Cemen | ft. to ft. to ft. to ft. to | 57
30 | ft., Fror
ft., Fror
ft., Fror | m | ft. to |) | | | GROUT | Annular
MATERIAL
vals: Fron | Fill 1 Neat ce | From From | 30 | ft. to ft. to ft. to ft. to | 57
30 | ft., From ft., From ft., From ft., From tonite 4 | m | ft. tc | o | | | GROUT
irout Interv | Annular MATERIAL vals: From nearest so | Fill 1 Neat ce n. 0 | From From From ment | . 3.0 | ft. to ft. to ft. to ft. to | 57
30 | ft., Fror ft., Fror ft., Fror tonite 4 . to | m | ft. to ft. to ft. to | ft. to . | water well | | GROUT
rout Interv
/hat is the
1 Sep | Annula: MATERIAL vals: From e nearest so- otic tank | Fill 1 Neat cel n. 0 | From From ment to20 contamination: | 30
20
2 Cemen
ft., | ft. to | 30
3 Bec | ft., Fror ft., Fror ft., Fror ntonite 4 to 10 Lives: | m | ft. to ft. to ft. to n | tt. to pandoned | water well | | GROUT
frout Interv
/hat is the
1 Sep
2 Sev | Annula: MATERIAL vals: From e nearest so otic tank wer lines | Fill 1 Neat ce n. 0 | From From From ment to20 contamination: lines | 30 | ft. to ft. to ft. to ft. to ft. to ft. ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft. | 30
3 Bec | ft., Fror ft., Fror ft., Fror ntonite 4 to | m | ft. to | ft. to pandoned I well/Gas | water well | | GROUT
rout Interv
/hat is the
1 Sep
2 Sev
3 Wat | Annular MATERIAL vals: From e nearest so- otic tank wer lines stertight sewer | Fill I Neat ce n. 0 | From From From ment to20 contamination: lines | 30 | ft. to | 30
3 Bec | ft., Frorft., Frorft., Fror ntonite 4 | m | ft. to ft. to ft. to n | ft. to pandoned I well/Gas | water well | | GROUT rout Interview fhat is the 1 Sep 2 Sev 3 Wai | Annular MATERIAL vals: From e nearest so- otic tank wer lines stertight sews om well? | Fill 1 Neat ce n. 0 | From From From ment to20 contamination: lines cool ge pit | 30 | ft. to ft. to ft. to ft. to ft. to ft. ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft. | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview In Sep 2 Sev 3 Water Interview In Sep 2 Sev 3 Water Interview In Int | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sewe om well? | Fill 1 Neat cer 1 0 ft 1 Lateral 5 Cess p 1 of Seepage 1 all | From From From ment to20 contamination: lines cool ge pit | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bec | ft., Frorft., Frorft., Fror ntonite 4 | m | ft. to | ft. to pandoned li well/Gas her (speci | water well | | GROUT frout Interview In Sep 2 Sev 3 Waterirection from | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sewe om well? TO 30 Ø/ | Fill 1 Neat cere 1 Neat cere 2 Lateral 5 Cess per lines 6 Seepage 11 Topsoil & C | From From From ment to20 contamination: lines cool ge pit | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview is the 1 Sep 2 Sew 3 Wat irection for | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sewe om well? | Fill I Neat cere of possible concept possi | From From From ment to20 ontamination: lines ool ge pit LITHOLOGi | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview In Sep 2 Sev 3 Water Interview In Sep 2 Sev 3 Water Interview In Int | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sewe om well? TO 30 Ø/ | Fill 1 Neat cere 1 Neat cere 2 Lateral 5 Cess per lines 6 Seepage 11 Topsoil & C | From From From ment to20 ontamination: lines ool ge pit LITHOLOGi | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview 1 Sep 2 Sev 3 War irrection fro FROM 0 30 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interval /hat is the 1 Sep 2 Sev 3 War irrection fro FROM 0 30 38 | Annular MATERIAL vals: From nearest so bitic tank wer lines tertight sew om well? TO 30 \$\Phi/1 38 \$\Phi/7\$ | Fill I Neat cere of possible concept possi | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview 1 Sep 2 Sev 3 War irrection from 1 0 10 18 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interval /hat is the 1 Sep 2 Sev 3 War irrection fro FROM 0 30 38 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interval /hat is the 1 Sep 2 Sev 3 War irrection fro FROM 0 30 38 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview 1 Sep 2 Sev 3 War irrection from 1 0 10 18 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Intervented is the 1 Sep 2 Sev 3 War rection from | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Intervented is the 1 Sep 2 Sev 3 War rection from | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Intervented is the 1 Sep 2 Sev 3 War rection from | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT out Intervent is the 1 Sep 2 Sev 3 War rection from 0 0 8 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Intervented is the 1 September 2 Sevented 3 Warrection from 10 0 0 8 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Intervented is the 1 Sep 2 Sev 3 War rection from | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview 1 Sep 2 Sev 3 War irrection from 1 0 10 18 | Annular MATERIAL vals: From e nearest so otic tank wer lines stertight sews om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1\$ | Fill I Neat cere O Topsoil & C Fine sand Clay, brown | From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br | | ft. to ft. to ft. to ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft | 30
3 Bei | ft., Fror ft., Fror ntonite 4 to | m | ft. to ft | ft. to pandoned li well/Gas her (speci | water well | | GROUT rout Interview of the second se | Annular MATERIAL vals: From nearest so otic tank wer lines stertight sews om well? TO 30 \$\Phi/1 38 \$\Phi/7 41 \$\Phi/1 57 \$/7 | Fill I Neat cere of possible concerns of possible concerns of Seepage all Topsoil & concerns of Seepage all Topsoil & concerns of Seepage all Seepa | From From From From The second of o | .30 | ft. to ft. ft. ft. ft. ft. ft. ft. | 30 3 Ber ft goon FROM | ft., Frorft., Fror ft., Fror ntonite 4 to 10 Lives: 11 Fuel: 12 Fertili 13 Insec: How man | m | n | ft. to pandoned I well/Gas her (speci | water well well ify below) | | GROUT rout Interval I | Annular MATERIAL vals: From nearest so otic tank wer lines stertight sews om well? TO 30 \$\Phi/1 38 \$\Phi/7 41 \$\Phi/1 57 \$/7 ACTOR'S O | Fill I Neat cere I Neat cere I Neat cere I Lateral I Cess per lines 6 Seepage I Topsoil & cere Fine sand Clay, brown Sand & gray | From From From From From From From 20 contamination: lines cool ge pit LITHOLOGi clay, br | 20 2 Cemen ft., 7 8 9 IC LOG own & g1 | to ft. ft. to ft | 30 3 Ber ft goon FROM | ft., Fror ft., Fror ft., Fror ntonite 4 . to 10 Lives: 11 Fuel: 12 Fertili 13 Insec: How man TO | mm Other | n 14 At 15 Oi 16 OI PASTURE. LITHOLOGI | ft. to pandoned I well/Gas her (speci LAND) | water well well ify below) | | GROUT rout Interval I | Annular MATERIAL vals: From n nearest so bitic tank wer lines stertight sews om well? TO 30 \$\Phi/1 38 \$\Phi/7 41 \$\Phi/1 57 \$/\frac{7}{7} ACTOR'S Coon (mo/day/) | Fill I Neat cere I Neat cere I Neat cere I Lateral I Cess per lines 6 Seepage I Topsoil & cere Fine sand Clay, brown Sand & gray OR LANDOWNER'S Vear) 4/16 | From From From From From From Prom From 20 contamination: lines cool ge pit LITHOLOGI clay. br. clay. br. med. SCERTIFICA 6/88 | 20 2 Cemen ft., 7 8 9 IC LOG own & g1 | to ft. ft. to ft | 30 3 Ber ft goon FROM | tructed, (2) reco | n Other | ft. to ft | ft. to pandoned well/Gas her (speci LAND). | water well well ify below) | | GROUT rout Intervented to the second of | Annular MATERIAL vals: From nearest so otic tank wer lines tertight sew om well? TO 30 Ø/ 38 Ø 7 41 Ø/ 57 / 7 ACTOR'S Oon (mo/day/) Contractor's | Fill I Neat cere I Neat cere I Neat cere I Lateral I Cess per lines 6 Seepage I Se | From From From From From From From 20 contamination: lines cool ge pit LITHOLOG clay, br n vel, med SCERTIFICA 5/88 185 | | reen fine water well v | 30 3 Bei ft goon FROM Vas (1) consi | tructed, (2) reco | n Other | ft. to ft | ft. to pandoned well/Gas her (speci LAND). | water well well ify below) | | GROUT rout Intervented is the 1 Sep 2 Sew 3 Waterection for FROM 0 60 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Annular MATERIAL vals: From nearest so otic tank wer lines stertight sew om well? TO 30 \$\phi/1 38 \$\phi/7 41 \$\phi/1 57 \$/7 ACTOR'S Oon (mo/day/) Contractor's ousiness name | Fill I Neat cere I Neat cere I Neat cere I Lateral I Cess per lines 6 Seepage I Topsoil & cere Fine sand Clay, brown Sand & gray OR LANDOWNER'S Vear) 4/16 | From From From From From From From 10 | 20 2 Cement ft., 7 8 9 IC LOG own & gr | reen fine water well wat, Inc. | 30 3 Ber ft goon FROM Vas (1) consi | tructed, (2) reco | n Other | ft. to ft | ft. to pandoned I well/Gas her (speci LAND) | water well well fy below) sdiction and wand belief. Kans |