| | Edwa | | NE 1/4 | | - /- | 4 | т <i>8</i> .5 | s_ | R /L | <i>p</i> E/(√) | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------| | Distance | and direction | from nearest town | • | ddress of well if located | • | | | | | | | | | | | 225 miks, last | 0.5 miles, | on south | side of road | y is the C | compresser | Station | | 2 WATE | R WELL OW | NER: Northern | · Natural | Gas | | | | | | | | RR#, St. | Address, Bo | x # : 1111 Sou | un 103rg | Street | | | Board of | Agriculture, [ | Division of Wate | er Resources | | 1 | e, ZIP Code | | NE 68124 | | | | | n Number: | | | | 3 LOCAT | E WELL'S L | | | OMPLETED WELL | | | | | | | | AN X | IN SECTION | N BOX: | epth(s) Ground | water Encountered 1. | | 32ft. 2. | | ft. 3 | | | | 7 | İΧ | N N | VELL'S STATIC | WATER LEVEL | ft. be | low land surf | ace measured o | n mo/day/yr | | | | 1 1 | NW | NE | Pump | test data: Well water | was | ft. aft | ter | . hours pu | mping | gpm | | 1 [ | 1 | , E | | gpm: _Well water | | | | | | | | .e w L | i | l B | ore Hole Diame | oter <b>.8.75</b> in. to . | 40 | ft., a | ınd | in. | to | <b>.</b> | | * w | ! | i j " | VELL WATER T | O BE USED AS: | Public water | supply 8 | 8 Air conditionin | • | Injection well | | | ī l. | SW | SE | 1 Domestic | 3 Feedlot 6 | Oil field wat | er supply | 9 Dewatering | 12 | Other (Specify | below) | | | 1 | i i i | 2 Irrigation | | | | Monitoring we | | | | | 1 | | | | pacteriological sample s | ubmitted to De | | | | | nple was sub- | | <del>-</del> | | | nitted | | | | er Well Disinfect | | No | | | _ | | CASING USED: | | 5 Wrought iron | 8 Concre | | | | I Clam | • | | 1 St | | 3 RMP (SR) | | 6 Asbestos-Cement | | specify below | • | | ed | | | ②P' | VC | 4 ABS | . 25 | 7 Fiberglass | | | | hrea | ided) | | | | | | | | | | | | | | | | | | | in., weight | | | | | | | | | | R PERFORATION | | | ØPV( | | | bestos-ceme | | | | 1 St | | 3 Stainless s | | 5 Fiberglass | | P (SR) | | | | | | 2 Brass 4 Galvanized steel | | | | 6 Concrete tile 9 ABS | | • | | one used (op | • | an hala) | | SCREEN OR PERFORATION OPENINGS ARE: (1) Continuous slot 4 010 3 Mill slot | | | | 5 Gauzed wrapped | | | 8 Saw cut | | 11 None (ope | en noie) | | _ | | | | 6 Wire wrapped | | | 9 Drilled holes | | | | | | ouvered shut | ED INTERVALS: | punched<br>From | 7 Torch | cut<br>40 | 4 5 | 10 Other (speci | ту) | | 4 | | SCHEEN- | FERFORATI | ED INTERVALS: | | ft. to | , 79 | IL., FIOII | 1 | | | | | | GDAVEL DA | OL INTERNAL O | riom | | 116 | It., From | 1 | | J | | | | | | From | <del>اران ( اران ( اران ( ( اران ( ( اران ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (</del> | 4() | # Eron | • | f+ +, | | | | | GHAVEL FA | CK INTERVALS: | | | 40 | | | | | | | | | 10-20 | From | ft. to | | ft., From | n | ft. to | <u> </u> | ft. | | 6 GROU | T MATERIAL | /D-20<br>.: ①Neat cer | From<br>ment | ft. to<br>2 Cement grout | ③Bentor | ft., From | Other | ft. to | | ft. | | 6 GROU | T MATERIAL | /D-20<br>.: ①Neat cer<br>m | From<br>ment<br>to .2.1 | ft. to | ③Bentor | ft., From<br>hite 4 (<br>o 23 | n<br>Other<br>ft., From . | ft. to | | ft | | 6 GROU<br>Grout Inte | T MATERIAL<br>ervals: From | /D-20<br>.: ①Neat cer | From ment to .2.1 ontamination: | ft. to 2 Cement groutft., From | ③Bentor | ft., From<br>nite 4 (<br>o 23<br>10 Livesto | n<br>Other ft., From .<br>ock pens | ft. to | | ft. | | 6 GROU<br>Grout Inte<br>What is th | T MATERIAL | //O-AO .: ① Neat cer m O ft. ource of possible co 4 Lateral | From ment to . 3.1 ontamination: | ft. to 2 Cement grout ft., From 7 Pit privy | のBenton | ft., From<br>nite 4 (<br>o 23<br>10 Livesto<br>11 Fuel s | Other | ft. to | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 Se<br>2 Se | T MATERIAL<br>ervals: From<br>the nearest so<br>eptic tank<br>ewer lines | //O-AD .: ① Neat cer m | From ment to . 3.1 ontamination: lines | ft. to 2 Cement grout ft., From 7 Pit privy 8 Sewage lago | のBenton | ft., From<br>nite 4 (<br>o 23<br>10 Livesto<br>11 Fuel s<br>12 Fertiliz | Other | ft. to | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W | T MATERIAL<br>ervals: From<br>the nearest so<br>eptic tank<br>ewer lines | //O-AO .: ① Neat cer m O ft. ource of possible co 4 Lateral | From ment to . 3.1 ontamination: lines | ft. to 2 Cement grout ft., From 7 Pit privy | のBenton | ft., From<br>hite 4 (<br>o 23<br>10 Livesto<br>11 Fuel s<br>12 Fertiliz | Other | ft. to | o | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W | T MATERIAL<br>ervals: From<br>the nearest so<br>eptic tank<br>ewer lines<br>datertight sew | ID-AD .: ① Neat cer m | From ment to .3.1 contamination: lines cool ge pit | ft. to 2 Cement grout ft., From 7 Pit privy 8 Sewage lago 9 Feedyard | のBenton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti | Other | ft. to | ther (specify be | ftft. er well l | | GROU<br>Grout Inte<br>What is th<br>1 Sc<br>2 Sc<br>3 W<br>Direction | T MATERIAL ervals: From the nearest screptic tank ewer lines evaluated attention well? | ID-AD Neat cer D. ft. Durce of possible co 4 Lateral 5 Cess poer lines 6 Seepag | From ment to 21 contamination: lines cool ge pit LITHOLOGIC | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | GROU<br>Grout Inte<br>What is th<br>1 Sc<br>2 Sc<br>3 W<br>Direction | T MATERIAL ervals: From ten earest screptic tank ewer lines datertight sew from well? | ID-AD .: ① Neat cer m | From ment to 21 contamination: lines cool ge pit LITHOLOGIC | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 Se<br>2 Se<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer D. ft. Durce of possible co 4 Lateral 5 Cess poer lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From ten earest screptic tank ewer lines datertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU<br>Grout Inte<br>What is th<br>1 So<br>2 So<br>3 W<br>Direction<br>FROM | T MATERIAL ervals: From en earest so eptic tank ewer lines fatertight sew from well? | ID-AD Neat cer Neat cer Lateral Cess per Ver lines 6 Seepag | From ment to J. ines cool ge pit LITHOLOGIC LIGHY San | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | <b>③</b> Benton | ft., From hite 4 ( o 33 10 Livesto 11 Fuel s 12 Fertiliz 13 Insecti How man | Other | ft. to 14 Al 15 O (6) O . Compc | ther (specify be | ftft. er well l | | 6 GROU Grout Inter What is the 1 Sec. 3 W Direction FROM O G JA A D | T MATERIAL ervals: From ne nearest so eptic tank ewer lines l'atertight sew from well? TO Q IA AO 40 RACTOR'S O | ID-AD I Neat cer II Neat cer II Lateral I Cess predicts 6 Seepage Brown Sitt Bud Sitty Gray Sitty Red Sitty Red Sitty Red Sitty | From ment to 21 contamination: lines | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard | ⑤Benton AJ. ft. ft. | ft., From hite 4 (1) o 23 | n Other | ft. to | o. ft. to<br>pandoned wate<br>il well/Gas well<br>ther (specify be<br>といって、ひたん<br>NTERVALS | ftft. er well l elow) action | | 6 GROU Grout Inter What is the 1 Sec. 3 W Direction FROM O G JA A D | T MATERIAL ervals: From ne nearest so eptic tank ewer lines l'atertight sew from well? TO Q IA AO 40 RACTOR'S O | DR LANDOWNER'S | From ment to 21 contamination: lines | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard LOG And And And ON: This water well wa | ©Benton AJ. ft. 1 | ft., From hite 4 ( hite 33 | n Other | ft. to | or ft. to candoned water il well/Gas well ther (specify be essert of a control | ftft. er well l elow) actiox ion and was | | 6 GROU Grout Inter What is the 1 Sc 2 Sc 3 W Direction FROM O (p /2) 20 | T MATERIAL ervals: From ne nearest so eptic tank ewer lines datertight sew from well? TO (p 12) 20 40 40 40 40 40 40 40 40 40 40 40 40 40 | DR LANDOWNER'S | From ment to 21 contamination: lines | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard LOG And And And ON: This water well wa | ©Benton AJ. ft. 1 | ft., From hite 4 ( hite 33 | n Other | ft. to | or ft. to candoned water il well/Gas well ther (specify be essert of a control | ftft. er well lelow) action ion and was | | 6 GROU Grout Inter What is the 1 Sc 2 Sc 3 W Direction FROM O CO 12 CONT COMPleted Water Weether Weether Completed Water Weether Control of the 12 CONT COMPleted Water Weether Control of the 12 1 | T MATERIAL ervals: From enearest screptic tank enearest screptic tank enearest in the enearest screptic tank enearest screptic tank enearest eneare | DR LANDOWNER'S License No | From ment to 21 contamination: lines cool ge pit LITHOLOGIC Ly Clay San Cl | ft. to 2 Cement grout 7 Pit privy 8 Sewage lago 9 Feedyard LOG And And And ON: This water well wa | SBenton AJ. ft. 1 FROM FROM S (1) construction | ft., From hite 4 ( hite 4 ( hite 4 ( hite 3 ( hite 4 hi | n Other | ft. to | or ft. to candoned water il well/Gas well ther (specify be essert of a control | ftft. er well lelow) action ion and was |