| 1 | | |---|------------------| | | | | | | | ı | | | 1 | | | 1 | | | ł | _ | | ı | \mathbf{c} | | ı | \simeq | | ı | т | | I | ÷ | | ì | | | 1 | = | | ı | \boldsymbol{c} | | ı | ~ | | ı | 111 | | Ł | | | | _ | | ı | _ | | ŀ | <u></u> | | ı | ~ | | ı | m | | ł | • • • | | t | \sim | | Ł | \sim | | i | 7 | | ı | ~ | | | _ | | ı | _ | | ŀ | _ | | | | | County: | Ch- | | | | | | | | | | |--|---|--------------------------|--|--|--|--|--|--|--|--| | | Sne | ridan | SW 1 | 4 SW 1 | ¼ SW | 1/4 | 21 | T 7 | s | R 30 E | | Distance and | direction fro | m nearest | town or city street | 2 WATER V | WELL OWNE | R: Pea | av Miller | | | | | | | | | | dress, Box# | | | | | | | Doord of Agricu | Hum Dirinian | of Motor Docours | | | | | | | | | | • | | of Water Resource | | ity, State, Z | IP Code | ILOO : | by, Ks 67701 | | | | | Application Nun | nber: | | | AN "X" IN | SECTION R | VATON ANI | TIT 4 DEPTH O | E COMPLETED | WELL | 240 | # FIE | VATION: | | | | | N N | OA. | D#-(-) O | - COMITECTED | ************************************** | | 11. LLL | VATION | | | | | N | | Depth(s) Grou | indwater Encou | ntered 1 | | · · · · · · · · · · · · · · · · · · · | t. 2 | π. 3 | | | 1 | 1 1 | 1 | WELL'S STAT | TIC WATER LEV | VEL! | na ft. t | below land | surface measured or | n mo/day/yr | | | | NW | - NE | Pu | ımp test data: | Well water | was | · | ft. after | hours pump | oinggp | | | ''' | - | Est. Yield | gom: | Well water | was | • | ft. after | hours oump | ina an | | ₩ | i | | F Bore Hole Dia | meter 8 | in to | 240 |) | ft. and
8 Air condition
9 Dewatering | in to | 0 | | | | · i | WELL WATER | R TO BE USED | ĀŠ: 5 Pu | blic water su | pply | 8 Air conditioni | ina 11 Ini | ection well | | | | - | 1 Dome | stic 3 Feed lo | t 6 Oil | field water s | supply | 9 Dewatering | 12 Ot | her (Specify below | | 1 | -sw | - SE | 2 Irrigati | ion 4 Industri | ial 7 la | wn and garde | en (domesti | ic) 10 Monitoring | well | () | | · Ix | | 1 1 | | | | | | | | | | 1 7 | S | | 1 | cal/bactenologica | ai sampie si | ibmitted to D | | Yes No X | | | | T | | | submitted | | | | | ater Well Disinfected | | | | TYPE OF | BLANK CAS | ING USE | D: | 5 Wrough | ht Iron | 8 Concre | te tile | CASING JOIN | TS: Glued X | Clamped | | 1 Stee | el | 3 RM | MP (SR) | 6 Asbest | os-Cement | 9 Other (| specify belo | | | | | 2 PVC | | 4 AB | ` ' | 7 Fibergl | | | | | Threaded | | | | | | | • | 2 | in 4- | | # Dia | in 4 | | | arik casing | ulanielei _ | | 40 | it., Die | a | | | ft., Dia | III. U | 240 | | asing heigh | nt above land | surface | 10 | in., weight | | 2.38 | lbs./ft. | Wall thickness or g | auge No. | .248 | | PE OF SC | CREEN OR P | ERFORA | TION MATERIAL: | | | [7] | PVC | 10 Asbes | tos-cement | | | 1 3166 | 3 1 | 3 318 | amiess steel | 5 Fibergl | ass | 8 | RMP (SR) | 11 Other
12 None | (specify) | | | 2 Bras | | | Ivanized steel | 6 Concre | ete tile | 9 / | ABS | 12 None | used (open ho | ole) | | CREEN OF | R PERFORAT | | NINGS ARE: | | 5 Gauze | d wrapped | | 8 Saw cut | 11 | None (open hole) | | 1 Con | tinuous slot | | 3 Mill slot | | O 185 | | | | | | | 2 Lou | vered shutter | | 4 Key punched | | 7 Torch | cut | | 9 Drilled holes
10 Other (specifi
From | y) | | | CREEN-PE | RFORATED | INTERVA | LS: From | 200 | ft. to | 240 | ft. | From | ft. to | | | | | | | | | | | | | | | | | | From | 1 | ft. to | | | | | | | GRA | WEL PACK I | NTER\/AI | From | 20 | ft. to | | ft. | From | ft. to | | | GRA | VEL PACK I | NTERVAL | S: From | 20 | ft. to | 240 | ft.
ft. | From | ft. to | | | | | | S: From | 20 | ft. to
ft. to | 240 | ft.
ft.
ft. | From From | ft. to
ft. to
ft. to | | | GROUT N | MATERIAL: | 1 Ne | S: From
From
eat cement | 20
2 Cement gro | ft. to
ft. to
ut | 240
3 Bent | ft.
ft.
ft. | From From 4 Other | ft. to
ft. to
ft. to | | | GROUT N | MATERIAL: | 1 Ne | S: From
From
eat cement | 20
2 Cement gro | ft. to
ft. to
ut | 240
3 Bent | ft. ft. ft. | From From From 4 Other ft. From | ft. to
ft. to
ft. to | t. to | | GROUT N | MATERIAL:
als From | 1 Ne | S: From
From
eat cement | 20
2 Cement gro
0 ft. From | ft. to
ft. to
ut | 240
3 Bent | ft. ft. ft. | From From 4 Other | ft. to
ft. to
ft. to | t. to | | GROUT Note of the real | MATERIAL:
als From
nearest source | 1 Ne
0
e of possit | S: From From eat cement ft. to 20 | 2 Cement gro 0 ft. From | ft. to
ft. to
ut | 240
3 Bent | ft. ft. ft. conite 10 Lives | From From From 4 Other ft. From | ft. to ft. to ft. to ft. to | t. to
ned water well | | GROUT Note that is the rout 1 Sep | MATERIAL:
als From | 1 Ne
0
e of possit | S: From | 2 Cement gro 0 ft. From | ft. to
ft. to
out
7 Pit privy | 240
3 Bent
ft. to | ft. ft. ft. conite 10 Lives 11 Fuel | From From 4 Otherft. From stock pens storage | ft. to | t. to
ned water well
/ Gas well | | GROUT Notes that is the record 1 Sep 2 Sew | MATERIAL:
als From
nearest source
otic tank
wer lines | 1 Ne
0
e of possit | S: From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool | 2 Cement gro 0 ft. From | ft. to ft. to ut Pit privy Sewage I | 3 Bent ft. to | ft. ft. ft. conite 10 Lives 11 Fuel 12 Ferti | From From 4 Otherft. From stock pens storage | ft. to | t. to
ned water well
/ Gas well
specify below) | | GROUT No rout Interval /hat is the ring 1 Sep 2 Sew 3 Wat | MATERIAL:
als From
nearest source
stic tank
ver lines
tertight sewer | 1 Ne
0
e of possit | S: From | 2 Cement gro 0 ft. From | ft. to
ft. to
out
7 Pit privy | 3 Bent ft. to | ft. | From From 4 Otherft. From stock pens storage lizer storage cticide storage | ft. to | t. to
ned water well
/ Gas well
specify below) | | GROUT Morout Intervalent is the result of th | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? | 1 Ne 0 e of possit | S: From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage | 2 Cement gro 0 ft. From es 7 | ft. to ft. to ut Pit privy Sewage I | 3 Bent ft. to | ft. ft. ft. conite 10 Lives 11 Fuel 12 Ferti 13 Insec | From From 4 Otherft. From stock pens storage lizer storage ticide storage | ft. to ft. to ft. to ft. to ft. to ft. to | t. to
ned water well
/ Gas well
specify below)
none | | GROUT Morout Intervalent is the record 1 Sep 2 Sew 3 Waterection from | MATERIAL: als From nearest source tic tank wer lines tertight sewer m well? | 1 Ne 0 0 e of possit | S: From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage | 2 Cement gro 0 ft. From | ft. to ft. to ut Pit privy Sewage I | 3 Bent ft. to | ft. ft. ft. ft. conite o 10 Lives 11 Fuel 12 Ferti 13 Insec How many | From From 4 Otherft. From stock pens storage lizer storage cticide storage / feet? PLU | ft. to GGING INTER | t. to ned water well / Gas well specify below) none | | GROUT Morout Interval //hat is the real 2 Sew 3 Waterection from FROM 0 | MATERIAL: als From nearest source tic tank wer lines tertight sewer m well? TO 2 | 1 Ne 0 e of possit | S: From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH | 2 Cement gro 0 ft. From es 7 | ft. to ft. to ut Pit privy Sewage I | 3 Bent ft. to agoon FROM 117 | ft. | From From 4 Other ft. From stock pens storage lizer storage cticide storage / feet? PLU | ft. to GGING INTERMED SI W | t. to
oned water well
/ Gas well
specify below)
none | | GROUT Morout Interval frat is the results of re | MATERIAL: als From nearest source tic tank wer lines tertight sewer m well? TO 2 | 1 Ne 0 e of possit | S: From From Peat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess | 2 Cement gro 0 ft. From es 7 | ft. to ft. to ut Pit privy Sewage I | 240 3 Bent ft. to agoon FROM 117 124 | ft. | From From 4 Other ft. From stock pens storage lizer storage cticide storage / feet? PLU Fine to some Clay & caliche | ft. to | t. to ned water well / Gas well specify below) none RVALS //clay strks | | GROUT Morout Interval frat is the results of re | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 | 1 Ne 0 e of possit | S: From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay | 2 Cement gro 0 ft. From es 7 pit 9 | ft. to | 240 3 Bent ft. to agoon FROM 117 124 147 | ft. | From From 4 Other ft. From stock pens storage lizer storage cticide storage / feet? Fine to some Clay & caliche Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks | | GROUT Morout Interval frat is the results of re | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 | 1 Ne 0 e of possit | S: From From Peat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay 8 | 2 Cement gro 0 ft. From es 7 pit 9 | ft. to | 240 3 Bent ft. to agoon FROM 117 124 147 165 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage feet? PLU Fine to some Clay & caliche Fine to med s Caliche & cen | ft. to f | t. to ned water well / Gas well specify below) none RVALS /clay strks | | GROUT Morout Interval frat is the results of re | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 | 1 Ne 0 e of possit | S: From From Peat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone | 2 Cement gro 0 ft. From es 7 pit 9 HOLOGIC LOG | ft. to | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? PLUE Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks | | GROUT Morout Interval Part is the real 1 Sep 2 Sew 3 Water rection from FROM 0 2 21 35 41 49 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 | 1 Ne 0 e of possit | S: From From Prom Prom Prom Prom Prom Prom Prom P | 2 Cement gro 0 ft. From es 7 pit 9 HOLOGIC LOG | ft. to | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage feet? PLU Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks | | GROUT Morout Interval was the real of | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 | 1 Ne 0 e of possit | S: From From Prom Prom Prom Prom Prom Prom Prom P | 2 Cement gro 0 ft. From es 7 pit 9 HOLOGIC LOG | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage feet? PLU Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay | ft. to ft. to ft. to ft. to ft. to ft. to ff. ff | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval Part is the real 1 Sep 2 Sew 3 Water rection from FROM 0 2 21 35 41 49 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s | 2 Cement gro 0 ft. From es 7 bit 9 bit 9 bit 9 bit caliche str | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Mout Interval hat is the rection from FROM 0 2 21 35 41 49 55 64 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 | 1 Ne 0 e of possit | S: From From Prom Prom Prom Prom Prom Prom Prom P | 2 Cement gro 0 ft. From es 7 in 8 ioLOGIC LOG ic caliche straine sand sand & som iche lens | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? PLUE Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval was the real of | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s | 2 Cement gro 0 ft. From es 7 in 8 ioLOGIC LOG ic caliche straine sand sand & som iche lens | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval /hat is the result is the result is the result is the result in | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 | 1 Ne 0 e of possit | S: From From Prom Prom Prom Prom Prom Prom Prom P | 2 Cement gro 2 Cement gro 5 ft. From es 7 8 pit 9 10LOGIC LOG 6 caliche str ne sand sand & som iche lens v/sand strk | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? PLUE Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval hat is the residual state of the rection from FROM 0 2 21 35 41 49 55 64 76 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 | 1 Ne 0 e of possit | S: From From Peat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Fine to med s Gravel w/cali Sandy clay w | 2 Cement gro 2 Cement gro 5 ft. From es 7 8 pit 9 10LOGIC LOG 6 caliche str ne sand sand & som iche lens v/sand strk | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Clay Fine to med s Clay Fine to med s Clay Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval fraction from 1 Sep 2 Sew 3 Waterection from 1 Sep 2 Sew 3 Waterection from 1 Sep 2 Sew 3 Waterection from 1 Sep 2 Sew 3 Sep S | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Gravel w/cali Sandy clay w Fine to med s Clay Clay Clay Fine to med s Clay Clay Clay Clay Clay Clay Clay Clay | 2 Cement gro 0 ft. From es 7 8 pit 9 HOLOGIC LOG a caliche str ne sand sand & som iche lens v/sand strk sand | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Clay Fine to med s Clay Fine to med s Clay Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT Morout Interval / hat is the result is the result in the result is the result in | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 80 86 94 103 | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Fine to med s Gravel w/cali Sandy clay w Fine to med s Clay Fine to med s Clay Fine to med s Clay Fine to med s | 2 Cement gro 0 ft. From es 7 8 pit 9 HOLOGIC LOG a caliche str ne sand sand & som iche lens v/sand strk sand | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Clay Fine to med s Clay Fine to med s Clay Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel | | GROUT M rout Interva /hat is the r 1 Sep 2 Sew 3 Wat irrection fror FROM 0 2 21 35 41 49 55 64 76 80 86 94 103 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 80 86 94 103 117 | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Gravel w/cali Sandy clay w Fine to med s Clay | 2 Cement gro 0 ft. From es 7 8 pit 9 HOLOGIC LOG a caliche str ne sand sand & som iche lens v/sand strk sand sand & grav | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 235 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Fine to med s Clay Fine to med s Clay Fine to med s Clay Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel /clay strks | | GROUT Morout Interval /hat is the r 1 Sep 2 Sew 3 Wat irrection from FROM 0 2 21 35 41 49 55 64 76 80 86 94 103 | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 80 86 94 103 117 ACTOR'S OR | 1 Ne 0 e of possit | S: From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Gravel w/cali Sandy clay w Fine to med s Clay | 2 Cement gro 0 ft. From es 7 8 pit 9 HOLOGIC LOG a caliche str ne sand sand & som iche lens v/sand strk sand sand & grav | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 235 | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage feet? PLU Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Fine to med s Clay Fine to med s | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks k caliche strk nd all gravel /clay strks | | GROUT Morout Interval fraction from 1 Sep 2 Sew 3 Waterction from 1 Sep 2 Sew 3 Waterction from 1 Sep 2 Sew 3 Waterction from 1 Sep 2 Sew 3 Sep | MATERIAL: als From nearest source otic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 80 86 94 103 117 ACTOR'S OR n (mo/day/yr) | 1 Ne 0 e of possit | S: From From From Pat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med s Fine to med s Gravel w/cali Sandy clay w Fine to med s Clay | 2 Cement gro 0 ft. From es 7 8 pit 9 HOLOGIC LOG caliche str ne sand sand & som iche lens v/sand strk sand sand & grav ATION: This wa -28-06 | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 235 (1) construct and thi | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage reet? Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Fine to med s Clay | ft. to ft | t. to ned water well / Gas well specify below) none RVALS /clay strks & caliche strk nd all gravel /clay strks | | GROUT Mout Interval that is the real tha | MATERIAL: als From nearest source stic tank wer lines tertight sewer m well? TO 2 21 35 41 49 55 64 76 80 86 94 103 117 ACTOR'S OR n (mo/day/yr) Contractor's L | 1 Ne 0 e of possit | S: From From From eat cement ft. to 20 ble contamination: 4 Lateral line 5 Cess pool 6 Seepage LITH Surface Loess Clay Sandy clay & Sandstone Clay & calich Fine to med Gravel w/cali Sandy clay w Fine to med Clay | 2 Cement gro 0 ft. From es 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ft. to ft | 240 3 Bent ft. to agoon FROM 117 124 147 165 172 181 185 188 195 220 225 235 (1) construct and thi This W | ft. | From From From 4 Other ft. From stock pens storage lizer storage cticide storage feet? PLU Fine to some Clay & caliche Fine to med s Caliche & cen Sandstone & Fine to med s Clay Fine to some Fine to med s Clay Fine to med s | ft. to ft | t. to pned water well Gas well specify below) none RVALS /clay strks k caliche strk nd all gravel /clay strks jurisdiction and wa and belief. Kansas yr) 3-31-06 |